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The q-state Potts model (both scalar and gauge versions) is rewritten, with the 
help of the duality transformation, into a form of the Pirogov-Sinai theory with 
noninteracting contours that can be controlled by cluster expansions once q is 
large enough. This is then used in a new proof of the existence of a unique 
transition (inverse) temperature /3, where the mean internal energy is dis- 
continuous. Moreover, we prove for the scalar model (again for q large enough) 
that there are discontinuities at /~, of the magnetization and of the mass gap, 
with the magnetization vanishing below /?~ and the mass gap vanishing above 
fl,. We also show that the surface tensions between ordered stable phases are 
strictly positive up to/~,, and the surface tension between an ordered phase and 
the disordered one is strictly positive at /~,. For the three-dimensional gauge 
model, the Wilson parameter exhibits a direct transition from an area law decay 
(quark confinement) to a perimeter law decay (deconfinement). 

KEY WORDS:  Potts model; phase transition; surface tension; string tension; 
Wilson loop; duality transformation; Pirogov-Sinai theory; combinatorial 
topology. 

1. I N T R O D U C T I O N  A N D  RESULTS 

1.1. In t roduct ion 

The Potts model was introduced in 1952 (1) as a generalization of the Ising 
model by enlarging the number of values taken by the "spin" on each site 

1Center for Theoretical Physics (CNRS Laboratory LP7061), CNRS-Luminy-Case 907, 
13288 Marseille Cedex-9, France. 

2Department of Mathematics and Physics, Charles University, CS-18000, Prague8 
Czechoslovakia. 

3 Department of Physics and Mathematics, University of Provence, Marseille, France. On 
leave from ENS Rabat, Morocco. 

199 

0022-4715/90/0100-0199506.00/0 �9 1990 Plenum Publishing Corporation 
822/58/1-2-14 



200 Koteck~ e t  al. 

from two to an arbitrary integer value q. What makes the Potts model 
interesting is that its simple structure permits a rather precise analysis of 
its phase diagram. Moreover, it exhibits a temperature-driven first-order 
phase transition at some point where q + 1 phases coexist. A proof of the 
magnetization discontinuity in dimension 2 for q > 4 was given in ref. 2. In 
dimension d~> 2 one sees by using the usual Peierls argument that there are 
q translation-invariant Gibbs states at low temperatures. These q states 
coexist at the transition temperature with yet another state, the disorder 
one. The transition can be interpreted in terms of the energy entropy 
fighting, (3) the q ordered states correspond to perturbations of the ground 
states of the Hamiltonian, while the (q + 1)th one corresponds to a purely 
entropic state associated with the set of configurations where all nearest 
neighbor spins are different. 

A proof of the existence of a first-order transition (for q large) is 
presented in ref. 4, where also the gauge formulation introduced by 
Kogut (5) according to the Wilson formulation of field theory on the 
lattice (6) is analyzed. The proof is based on the use of the reflection 
positivity. (7/It is, however, natural and interesting to try to understand the 
transition in terms of the Pirogov-Sinai theory. (81 In ref. 9 a generalization 
of that theory was given with the notion of ground states replaced by 
measures over suitable subsets of the configuration space called restricted 
ensembles. In the case of the Potts model the restricted ensemble 
corresponding to the disordered state is the set of configurations where 
all nearest neighbor spins are different. In this theory contour models 
describing pure phases involve interacting contours and a good control on 
the decay of correlations in restricted ensembles is needed (diluteness 
hypothesis). A generalization of the Pirogov Sinai theory, where only 
standard contour model are used, is given in ref. 10, where a version of the 
diluteness hypothesis is also needed. Interacting contour models have been 
also introduced independently in ref. 11 and used in ref. 12 to analyze the 
set of translation-invariant Gibbs states. 

Another approach, which consists in transforming the (q + 1)th disor- 
dered phase into an ordered one, was initiated in ref. 13. It is based on an 
observation that the duality transformation turns a model with the free 
boundary conditions into a dual model with the ordered boundary condi- 
tions and a prefactor that captures the entropy of the disordered restricted 
ensemble. It turns out that this observation is useful also for Potts models 
that are not self-dual, e.g., the three-dimensional scalar model that is trans- 
formed by duality into the three-dimensional gauge model (let us recall 
that the two-dimensional scalar model and the four-dimensional pure 
gauge model are self-dual and the duality was used in refs. 13 and 14 as an 
exact symmetry at the transition (self-dual) temperature to evaluate the 
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probability of suitable contours separating ordered and disordered phases). 
Namely, it allows us to enclose Potts models, supposing q is large enough, 
into the framework of the standard Pirogov Sinai theory with noninter- 
acting contours. It might seem contradictory that a theory with noninter- 
acting contours is obtained; in Section 2.1 we explain in nontechnical terms 
the main idea of how it is achieved. 

Having formulated the models in terms of the Pirogov-Sinai theory, 
we use it to control the behavior around the transition temperature and to 
derive few new results (and rederive some old ones) concerning the scalar 
and the gauge Potts models. Namely, assuming that q is large enough, we 
prove for the d-dimensional scalar model (d~> 2) the existence of a unique 
first-order transition point/~, where q ordered phases coexist with a disor- 
dered one. The transition point /~t is thus that (inverse) temperature at 
which the (suitably defined) magnetization jumps to zero as /~ decreases. 
The mass gap (inverse of the correlation length defined with the free 
boundary condition) jumps at the same time from zero to a positive value. 
We also get a control over surface tensions between coexisting phases (two 
different ordered phases up t o / ~  and an ordered phase with the disordered 
one a t /~) .  For the three-dimensional gauge model we prove the existence 
of a unique first-order transition point//~ where the model exhibits a direct 
transition from an area law decay to a perimeter law decay. 

Notice that these results imply the absence of intermediate phase for 
Potts and gauge Potts models for large q. Such results were previously 
known for small values of q, namely for the percolation model (q = 1) and 
the Ising model (q=2) .  The sharpness of the transition for the bond 
percolation model was first proved in two dimension (15, 16) and more 
recently in three dimensions. ~17) For  the plaquette percolation model, the 
direct transition from an area law decay to a perimeter law decay has been 
showed in dimension three, (ls~ provided the transition of the dual three- 
dimensional bond percolation model is sharp. The absence of intermediate 
phase is also known for the Ising model in dimension greater than two, O9) 
and the direct transition from an area law decay to a perimeter law decay 
is proved for the three-dimensional Ising gauge model. (2~ Let us stress that 
these latter transitions are not first order in the considered dimensions, and 
thus nonperturbative arguments had to be employed, in contrast to our 
case, where convergent expansions for q large is used. 

The paper is organized as follows. We state our main results in 
Section 1.2 and explain the strategy on how to enclose Potts models in 
the framework of the standard Pirogov-Sinai theory in Section 2.1. In 
Section 2.2 we introduce the duality transformation. To this end, we find it 
useful to use the cell-complex formalism. For the reader's convenience we 
summarize it in Appendices A.1 and A.2. In Section 2.3 we define contours 
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and in Section 2.4 we use them to formulate an inductive expression for the 
partition functions. This is our starting point in Section 2.5, containing our 
main proposition, which allows us to write partition functions in terms of 
contours models with "good functions" provided a "generalized Peierls 
condition" is satisfied. This condition is proved in Appendix B for the 
scalar models with d>~ 2 and for the gauige model with d =  3. The proof 
requires some topological considerations that need further topological 
concepts concerning cell-complexes added in Appendix A.3. Finally, the 
proofs of the theorems are given in Section 3. 

1.2. Results 

To introduce the scalar q-state Potts model, we associate with each 
lattice site x =  { x l , . . . , x  a )  of Z d a spin ax taking values in the set 
{0, 1,..., q -  1 }. Let A ~ 7/d be a finite set. With a configuration a A - {ax}, 
x e A, we associate the Hamiltonian 

H b c ( a A )  = -- ~,  ~ . . . . .  ~.-- Z 6~ .ey  (1.2.1) 
<x; y> c A <x; y > : .  

x E A; y e T/a/A 

where 6 is the Kronecker symbol, 6o.o, = 1 if a = o' and zero otherwise, the 
two sums are over nearest neighbor pairs, and ff is fixed outside A and 
represents the boundary conditions (bc). In particular, we shall consider in 
the following: 

(i) The free (denoted f) boundary conditions: the second term in the 
rhs of (1.2.1) is omitted. 

(ii) The ordered (c 0 boundary conditions: all the spins 6y take the 
value ~. 

(iii) The mixed (~1,~2) boundary conditions: #y=c~ 1 if yl>~0, 
ffy=~2 if yl <0.  

(iv) The mixed (~, f) boundary conditions: #y = ~ if yl~> 0 and the 
terms from the second sum are omitted for y~ < 0. 

Gibbs measures in a volume A under certain boundary conditions (bc) at 
inverse temperature fl are probability measures that assign to a configura- 
tion o- m the probability 

bc 
~lA; f l (O.A)  = FZbAC(/~)l 1 e-en~(~,) ( 1 . 2 . 2 )  

with zb~(/3) the corresponding partition function. 
We use <g)b~(/~) to denote the expectation of a measurable function 

g with respect to the Gibbs measures (1.2.2) in a volume A, 
<g>~C(~) Z g ( ~ )  ~ 

= # A ; , B ( O ' A )  

~ ff ~QA 



q-State Potts Model 203 

where f2 A is the set of configurations in A. Here (.)bc(/~) denotes the 
corresponding infinite-volume limit (satisfying DLR equations). The free 
energy of the system is defined by 

f(flH) = lira ~ log ZAbC(fi) 
A ~  tA[ 

where IAI denotes the number of points in A and the limit is taken in the 
van Hove sense. 

Our first results are contained in the following theorems. 

T h e o r e m  1.1. Whenever d>~ 2 and q is large enough, there exists a 
unique first-order transition point ~,(q) where the derivative of the free 
energy with respect to /? is discontinuous. More explicitly, if x and y are 
nearest neighbors, one has 

(a) (6  ..... , )~(/3,)>1/2 : ~ { 0  ..... q - l }  

(b) (6 ..... , ) r ( f i , )<  1/2 

Introducing the magnetization M(fl)= [ 1 / ( q -  1) ] (q6  ..... - 1)~(/?) 
and the mass gap, defined, say, as the inverse correlation length along the 
axis (1, 0,..., 0), 

m ( f l , = -  Lim l l o g  [ q ~  (q6~(o,..,o,,~(x,o,..,o,- 1)r(/~,l 

we prove that both have a discontinuity at fl,. 

T h e o r e m  1.2. Supposing d>~2 and q is large enough, one has 

(a) M(/~) = 0 for/~ < fi, and M(/?) > 0 for/~/>/~, 

(b) m(/?)>0 for/?~<B, and m(/?)=0 for/~>/~, 

Once one knows that several phases coexist, an interesting problem is 
the existence or nonexistence of a surface tension between these phases. In 
thermodynamic systems the bulk free energy of two coexisting phases 
equals F ( 1 ) + F ( 2 ) +  ]SI"c 1'2, where F(1) and F(2) are the free energies of 
the pure phases (1) and (2), respectively, and ]SI is the area of the surface 
separating (1) and (2). The factor z 1.2 is called a surface tension (interfacial 
free energy). In particular, for a lattice model with spins taking values in 
a discrete finite group, one usually enforces two phases (1) and (2) to 
coexist (see refs. 21 and 22 for a review and results) by considering 
asymmetric boundary conditions around a finite rectangular box A c 7/a. 
More precisely, this situation will be generated if one imposes the boundary 
condition (1) [-which favors the pure phase (1)] around the top half of the 
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box A and the boundary conditions (2) [-which favor the pure phase (2)] 
around the bottom half of A. In the following we will be interested in two 
cases of phase coexistence and of surface tensions: 

1. The surface tension z~'~(fl) between two ordered phases e~ 
and c~2. 

2. The surface tension v~'f(fl) between an ordered phase c~ and the 
"disordered" of free phase. 

A definition of z~'f(fl) was suggested in ref. 23 and studied in ref. 13. 
Let 

A=__AL, M= {X=(XI,...,Xd)~7/dlO<~x1...xd I <~L; - M -  I <~xd<~M} 

The surface tensions z~'~2(fl) and z~'f(fl ), supposing the limit exists, are 

1 Z#;=a(fl) 
- Lim log 

#al,U2(f l)  = L r ~ 1 7 6  ~ rZ~ l l ( f l )  Z~A2(fl) 11/2 

- Lim log 
T a ' f ( f l )  = L~'~ ~ ~ [ Z ~ A ( f l )  Z f A ( f l ) ]  1/2 

defined by 

Theorem 1.3. Supposing d~>2 and q is large, one has (a) the 
surface tension r~,~2(fl) between two ordered phases is strictly positive if 
f l>fl , ,  and (b) the surface tension V'f(fl) is strictly positive at the 
transition point fl,(q). 

We now turn to the gauge model. In this case the random variables at 
are attached to the links l--  {x, y> of the lattice, take their valules in the 
set {0, 1,..., q - 1 } ,  and satisfy the condition a<x,y> + Cr<y.x> =0.  For every 
plaquette p (elementary square) we let a(p) denote as usual the sum 
mod(q) of the at over the four links of the plaquette p, 

a(p) = G<x,y  ) -I- G<y,z > -{- 6<z , t  ) -{- a<t ,x  ) 

Let L denote the set of links of Z u and let now A be a finite subset of L, 
A c L. The Hamiltonian of a configuration aA = {at}, l eL ,  is 

= - Z Z 
p ~ A  pc~ A v~ (,~ 

p c~ AC ~ ~j 

The variables at, l e A C = L \ A ,  in the second sum are fixed and represent 
the b.c., and (i) we call them the closed (0) b.c. if a t = 0  for lEA  C, and (ii) 
the free b.c. if the second sum is omitted. 
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In analogy with the scalar model, we introduce Gibbs measures, the 
partition function, and expectations. Notice that both the Hamiltonian and 
the measure are invariant under local gauge transformations 

! 

(T ( x , . v )  ~ {g ( x , y  ) ~_ O ' ( x , y  ) .At- ~ x  - -  T.y 

where rx is a random variable attached to the lattice site x. 

T h e o r e m  1.4. If d =  3 and q is large enough, there exists a first- 
order transition point fl~(q) where the derivative of the free energy with 
respect to/3 is discontinuous: 

(a) (6o(p),oo)~ 1/2 
(b) f ' (6~(p),O) (fl,) < 1/2 

We shall now consider the Wilson parameter. To introduce it, we 
attach to a loop 5r of size L . T  ( ~ = { ( x l x 2 ) ,  (XzX3), (x3x4),. . . ,  
( x n x l )  }) the variable 

0"(~P) = Z mod(q)0"l 
I ~ L  

The Wilson parameter is the expectation of [1/ (q-1)][q6~(~) ,o-  
while the Wilson string tension s(fl) is defined (24) by 

s ( f l ) = -  Lim 1 [q_~ll ] c. rr oo L ~ T  l~ (q6,,(.~),o - 1 )f(fl) 

1], 

It turns out that the Wilson parameter exhibits a direct transition from a 
regime of area law decay to a regime of perimeter law decay. Moreover, the 
Wilson string tension is discontinuous at fl~. 

T h e o r e m  1.5. If d =  3 and q is large enough, there exist constants 
k and k ' >  0 such that one has: 

1 
(a) ~ ( @ ~ ( ~ ) , 0 - 1 ) f ( f l ) ~ < e  -kar  if fl~<fl~ 

1 
(b) (q~o(~e~,o-1)f(fi)>/e -k'(L+r) if fl>fl; 

q - 1  

1 
(c) (q6~(~),o-1)~ -k'(L+r) if fl>~fl~ 

q - 1  
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2. F O R M U L A T I O N  IN T E R M  OF P I R O G O V - S I N A I  T H E O R Y  

2.1. In t roduct ion 

To get a control over the bahavior of the model around the transition 
temperature we shall use the Pirogov Sinai theory. The problem with its 
implementation stems from the fact that, although the q ordered phases of 
the Potts model are expresed as perturbations of the ground states as used 
in standard Pirogov Sinai theory, the (q + 1)th disordered phase coexisting 
at transition temperature needs for its description a generalization of the 
notion of ground states. Namely, one takes for the "disordered ground 
state" the corresponding restricted ensemble,(9~ i.e., the collection of entirely 
disordered configurations. The aim of Pirogov-Sinai theory now is to 
describe the disordered phase as the sea of the disordered ground state 
perturbed by small islands of order. This is achieved by expressing the 
probability of a given set of external contours (the boundaries of islands) 
as the probability of the same set for suitably chosen contour models. 
However, this is not possible in a direct way. While the entropy of the 
disordered ground state in the exterior of contours, and thus also their 
probability, depends slightly on their mutual positions, it does not for any 
standard contour models. 

Two generalizations of Pirogov-Sinai theory were suggested to over- 
come this obstacle. The method in ref. 9 is based on the introduction of 
"contour models with interactions." In ref. 10 a standard contour model is 
used for every fixed disordered configuration on the exterior of contours 
and the final probability of contours is then expressed in terms of means 
of those contour models with respect to restricted ensemble. A good 
control of the decay of correlations in restricted ensemble (diluteness 
hypothesis) is crucial for both approaches. 

Here we suggest an implementation of standard Pirogov-Sinai theory. 
This seems contradictory in the light of what was said above. Therefore, we 
shall first explain the idea of how it is achieved. All the technical details 
and full definitions are to be found in Sections 2.3 and 2.4. Our approach 
is based on the observation that a model in a finite volume with free 
boundary conditions transforms by duality into the corresponding dual 
model with spins ordered on the boundary. On the other hand, the free 
boundary conditions correspond to the disordered phase and the dual 
transformation brings a prefactor which actually expresses the entropy of 
the disordered "restricted ensemble" (this idea was introduced in ref. 13); 
all this suggests that whenever in the process of describing the model in 
terms of contours one meets the disordered phase, one should replace it 
with an ordered phase of the dual model. Indeed it turns out that one may 
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follow consistently these ideas. At the end we get a model with contours 
separating regions with ordered configurations of the original model and of 
its dual transform. We then apply the standard Pirogov Sinai theory to 
this model, obtaining an expression in terms of two standard models with 
parameters, one for the ordered phase of the original model and one for the 
ordered phase of the dual model. The latter yields relevant information 
about  the disordered phase of the original model. The transition tem- 
perature is then obtained as the unique temperature for which parameters 
of both models vanish. We found it useful to introduce these contour 
functionals in a constructive way using the inductive proocedure proposed 
in ref. 25. 

To prove the r-functionality, as one usually calls the condition yielding 
a good control of resulting contour models, one uses a generalized Peierls 
condition which expresses the fact that one pays, either by entropy or by 
energy, for creating an additional contour. It is natural (and based on an 
experience from ref. 4) to expect that such a condition is valid for q large 
at all temperatures. It is so for our version of the Peierls condition, a 
feature that our approach shares with ref. 10. 

2.2. Potts Model  and Dual i ty  Transformat ion  

Hereafter we shall use the cell complex formalism, which is very 
convenient when dealing with topological problems arising in calculations 
with the help of duality, which is crucial in our approach. For the reader's 
convenience this formalism is summarized in Appendix A. 

Let G be an Abelian group and K a cell complex (hereafter we shall 
only consider a-complexes); a G-valued ( p -  1)-chain cre C p- I(K, G) on a 
complex K may be interpreted as a configuration of a lattice model; the 
case p = 1 corresponds to a scalar model with spins taking values in G 
and attached to lattice sites, while p = 2 corresponds to a gauge model. 
Considering in particular 2q-valued chains (we shall represent ~q as a set 
of integers {0, 1, 2 ..... q -  1 } with summation modulo q), we may introduce 
generalized Potts models on a finite cell complex K with partition functions 
at an inverse temperature/?  defined by 4 

Z(K, fl, p ) =  ~ e ~H~(a~) (2.2.1) 
a e C P  I(K) 

HxP(~oP) = - Z(+~g[q)P(sP)] for ~oPeCe(K) (2.2.2) 
sP~ K 

4 Since we shall only consider Zq-valued chains, to simplify the notations we drop hereafter 
the corresponding specification and denote UP(K) instead of CP(K, Y_q), and analogously for 
its subgroups. 
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where 6 [ a ]  = 6~,o and the sum in (2.2.2) is only over positively oriented 
cells. Let us remark that (2.2.2) is used in (2.2.1) with (pP= da p- 1, where 
d f f P - I ( s P ) = o ' P - I ( ~ s P ) .  Here the boundary operator is restricted to the 
complex K (typically a cell subcomplex of the cell complex associated 
with 7/d and denoted by I_); this is actually a way of introducing certain 
boundary conditions. In particular, if K is closed (resp. open) Z(K, fl, p) is 
a partition function with the so-called free (resp. ordered "0") boundary 
condition. 

Remark. The sum over o -p 1 in (2.2.1) is redundant due to the 
invariance of the Hamiltonian. Namely, HP(d~7 p 1) is constant on the 
group of Zq-valued cocycles Z p-  ~(K) and may be expressed as a function 
on the 7/q-valued coboundary group BP(K). It will be useful to introduce 
the gauge fixed (g.f.) partition function (the term being justified by the case 
p = 2 )  by 

zg'f'(K, fl, p ) =  ~, e ~ ( b )  (2.2.3) 
b E BP(K) 

Denoting by ]G] the cardinality of G, we immediately get 

Here 

z ( g ,  fl, p) = IZ p -X(K)l Zgr-(g, fi, p) (2.2.4) 

IZ p ~(K)I-ICP-X(K)I (2.2.5) 
IBP(K)I 

since C p I(K) is a direct sum of the group Z p ~(K) and of a group 
isomorphic to BP(K). We define also the partition functions 

~gf(K, fl, p ) =  ~, e /~/t~(z) 
z ~ Z P( K) 

Z(K, fl, p ) =  [ZP-~(K)[ ,..,~gf(K, fl, p) 

Hereafter, we table the convention that, as in (2.2.1), the boundary 
operator is restricted to the considered complex. 

To introduce the duality transformation, we consider the Fourier 
expansion of e ~a(~) (identifying the dual group of 2q with Yq): 

e~(~) = l + (efl--1) 6 ( ~ ) -  (~(n) + 

e / ~ - 1 ( 1 +  q )~(me (2i"/ql"~ 
- q e ~ - - l ]  
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Applying this formula to every p-cell in (2.2.1), denoting by NP(K) the 
number of p-cells in K, and introducing the scalar product ((p, ~ ) =  
Z(+) ~o(s p) tp(s p) for every two 7/q-valued p-chains, we get s P E K  

Z(K, fl, p) = ~, e-~*~/~(~) ~ e t2i"/q)(~'a~) 
q~ECP(K) crGCP I(K) 

Here the dual temperature fl* is defined by 

(e ~*-  1)(e/~- 1)= q (2.2.6) 

Observing that 

(~0, da)= (d*(p, a ) [ =  Z(+)(,O((~CasPl)a(sP-I)] 
S P - I E K  

where the boundary and coboundary operator are restricted to K, and 
summing over ~P-1, we get 

Z(K, fi, p )=  qN, '(K) ~, e-~*H~(z) 
z e Zp( X) 

Using the isomorphism between Zp(K) and Z a P(K*), where K* is the 
dual complex of K, and the correspondence (A.4), we obtain 

Z(K, fl, p )=  qN,-~(m ~ exp[ - f l*H~:P(z , ) ]  
z .  ~ Z  d P(K*) 

with H~. p defined in the same way as in (2.2.2). Thus, 

Z(K, fl, p) = qX,-'(m 2gs.(K,, fl,, d -  p) (2.2.7) 

Introducing the factor 

2gr(K *, fl*, d - p )  
co(K*, fl*, d -  p) = z g . f . ( K ,  ' f l , ,  d -  p) 

taking into account (2.2.4) and (2.2.5), we finally get the duality relation 

Z(K, fl, p) = q Np-I(K)- Bp(K)] co(K*, fl*, d -  p) 

x Z(K*, fl*, d -  p) (2.2.8) 
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Note that if the cell complex K has a trivial p-homology group, 
Hp(g) = Hd-P(K *) = {0}, the factor co(K*, fi*, d - p )  in (2.2.8) is equal to 
one. 

We introduce the notation 

[-J(K, fl, p ) =  ~ e -~u~(d~) 
a~ CP-I(K) 

in terms of which an expectation value equals 

( . ) ( X ,  fl, p ) =  [Z(K, fl, p) ]  - I [ . ] (K ,  fl, p) 

Submitting the sum in [ . ] (K,  fl, p) to a similar procedure as in the proof 
of (2.2.8), we get, supposing that Hp(K)= {0}, the following identities, 
which relate, in particular, the free "f" and "ord" b.c.: 

IF[  6[da(sP)]~ (K, fl, p) 
s P ~ P  / 

= ( 1 -  e - ' ) - N P ' e ) / s ~  e* e-'*atd~*(~-P)3) (K*'fi*'d-p, (2.2.9) 

where P is a subcomplex of K. 
We end this subsection with a technical statement that will be crucial 

in obtaining noninteracting contour models. 

kemrna 2.2.1. Let L and I be two subcomplexes of 0_ such that the 
gq-valued p-cohomology group of K is trivial, HP(K)= {0}, I is open, and 
I c K ; t h e n ,  for l ~ < p ~ < d - 1  

[e#NP(K\" [ZP-I(K){]-I  t p  •[dff(sP)] t) (K, fl, p ) =  ~gf ( / ,  fl, p) (a) 
s E K \ I  

(b) Let the fx be a function on C p with support in I0 c I; then 

[e ~Np(K\z, [Z p l(K)l]-X { ) -  I b[dcr(sP)]fz(dff)} (K, fi, p) 
s E K \ I  

= y '  fx(z) e-/~Hf(~) 
z ~ Z"(I) 

ProoL Consider the canonical extension i1" CP(I) ~ CP(K). Since I i s  
open in K, dKil= iidl (dx denoting the restriction of d to the complex X) 
and we get 

ilZP(I) = {2 ~ ZP(K)[ z(s p) = 0 ifsP ~ K\I} 
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Since HP(K)= {0} by assumption we have 

i ,ZP(I )= {b E BP(K)[b(s p) = 0 i fs  p ~ K \ I }  

Hence 

"~g'f'(I'fl'P)=e-BNP(g\l) 2 e-aH)(b~ l-I OEb(sP)] 
b ~ BP(K) sP ~ I~l 

= [e flplp(K\I) ' Z P - I ( K ) , ]  l fsP~K,l(~[dG(sP)] } (K, fl, p) 

The proof of statement (b) is analogous. | 
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2.3. Def in i t ion of Contours 

To introduce contours, we shall use the concepts of the envelope and 
of the fringe of a set of lattice p-cells Qp, Q p c  k p (k p denotes the set of 
p-cells in k). We shall denote by Qp the closure of Qp and we define: 

�9 The envelope E(Q p) of Qp as the maximal closed subcomplex of k 
whose set of r-cells, r ~< p, coincides with Qp, E(Q p) c~ k p = Qp. An explicit 
expression is E(Q p) =- Uqd=p+l Eq(Q p) ~J Q_P, with EP(Q p) -- Qp and 
Eq ( Q p) = { S q ~ ~-q [ all s q- 1 of Os q belongs to E q- l(Qp) } whenever q ~>p + 1. 

�9 The fringe F(Q p) of Qp by F(Q p) = ~_\{E(Q p) w E(I_~ ~ c~ E(QP)}. 

�9 The boundary B(K) of a cell complex K by B(K) = k \ K ~  K. 

In particular, if A c L ~ the complement of union of envelopes of 
A and A " = k ~  is then called the fringe F(A) of A, F (A )=  
L \ E E ( A ) w E ( A ' ) ] .  Notice that the complex F(A) contains no lattice 
points. F(A)c~ k~  ~ ,  and that F ( A ) =  F(AC). The contours will have for 
their support the fringe of their exterior. 

Consider thus a configuration a ~ C p- l(k) such that the set of p-cells 
MP(~r)={sP~-PI~T(~sP)5~O } is finite. Denoting by Qp(~I) the unique 
infinite component (connected subcomplex) of the complex a_P\mP(~r), we 
shall denote by F(a) the fringe of Qp(o-): F( ( r )=F(QP(6 ) ) .  Clearly, 
s p E Qp(a) implies ~r(Os p) = 0 (rood q), while s p ~ F(a) implies a(Os p) ~ 0 
(mod q). 

A pair '7 = {7, as}, where 7 is a component of F(a) and a~. the restric- 
tion of a on the complex 7, will be called an external contour of  ~r. A pair 
7 =  {7, as} with 7 a subcomplex of k and a.z a configuration on it, 
a E C p 1(7), will be called a ( p -  1)-contour if there exists a configuration 
a e C p-  1(7 ) such that 7 is its external contour. 

Whenever ~ is a contour, we call the complex ? its support, 7 = supp ~7, 
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and introduce the complexes Ext 7 as the unique infinite component of ~_\~, 
V(7) = 0_\Ext 7, and Int ? = V(7)\?. The complexes 7 and V(7) are open, 
whereas the complexes Int 7 and Ext 7 are closed. Notice that in the case 
p = 1 (scalar model) there are no lattice sites in 7; then a contour may be 
identified with its support without any configuration a~ on it. 

Two contours 71 and ~2 with disjoint supports are called mutually 
compatible. They are called mutually compatible external contours if 
V(71)cExt72 and V(72)cExtT~.  It is easy to show that whenever 

= {~1, ~2, 73 ..... ~n} is a family of mutually external contours, there exists 
a configuration a with the same set of external contours. For  such a family 
0 of external contours we shall use the notation 0 = supp 0 = UiTi, V(O)= 
U~ v(Ti), Int 0 = v(o)\o, Ext 0 = E\V(O), and Extv0 = V n  Ext 0 whenever 
Vc0_. 

For  contours on the dual lattice E* defined in the same way as above 
with E replaced by E* we shall use the notation ~ , =  {7,,  a , 7 , } .  Notice 
that 7 ,  is a support of a contour and hence an open subcomplex of E*, 
while 7* is the dual of the complex 7 and it is thus a closed subcomplex of 
n_* for every ~ = {7, a~}. 

2.4. Inductive Expression of Partition Functions 

In accordance with our strategy outlined in Section 2.1, we first 
express partition functions in terms of contours on both ~_ and its dual ~_*. 
We proceed in an inductive way. When doing so, we will meet partition 
functions with "disordered" and "ordered" boundary conditions. The 
partition functions with "disordered" boundary conditions are defined for 
a subcomplex V(O) whenever 0 is a support of a family of mutually external 
contours by 

,-,~g'f'(0, j~, p [ d i s ) =  ~ e-~"q'(0~ (z~ y[ [ 1 - 6 ( z ( s p ) ) ]  
z E  Z P ( V ( O ) )  s P ~  0 

Z(0, fl, p l d i s ) - - ] Z  p l(v(o))13gf(O, fl, p]dis) 

Notice that one has 

zgf(0 ,  fl, p[dis) = IF] zgf(7,  fl, p[ dis) 
yE0 

The partition functions z g t ( 0 , ,  fl*, d -  p [ dis) and Y,(O,, fl*, d -  p[dis) for 
a subcomplex V(O,) of ~_* are defined in an analogous way. 

Remark. In the case p =  1 we have 

~gr(o, fl, p[dis)= ~ e P"~v,or d'~) l-I [1-c3(da(sl))] (2.4.1) 
a e c o ( V ( O ) )  s t e 0 
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where d is restricted to the complex V(O). The proof of this fact follows 
from the Alexander theorem. 

Indeed, by construction of contours, I_\V(O) has only one connected 
component [~z~ then, from Theorem A.1 (Appendix A), 
~za- 1([ V(0)]*) equals zero and we obtain 

~l(v(0)) = ~ l(Ev(0)]*) =0  
Moreover, 

~O(v(O))~---Td 1([- V ( 0 ) ] * )  = 0, TI(V(O))=T d 2 ( I V ( 0 ) ] * )  = 0 

since the closed complex IV(0)]* is d -  1 and d - 2  torsion free. Therefore 
we deduce from (A.7) that H~(V(O)) is the null group. 

On the other hand, for open complexes V= V(O) 

IC~ 
iBl(v) I IZ~ 

This is a consequence of the fact that B~ is the null group for open com- 
plexes (ref. 26, Vol. 2, p. 94) and that H~ is isomorphic to Hd(V*), 
which is also the null group, since ~a (V, )=  0 and the closed complex V* 
is d -  1 and d -  2 torsion free according to Theorem A.1. 

The equality (2.4.1) then follows from (2.2.4). 
The following statement yields the sought inductive expression and 

serves thus as a starting point for expanding partition functions in terms of 
contour models. This statement plays in our case the role of Lemma 2.3 
from ref. 27. 

k e m m a  2.4.1 .Whenever V and V, are open subcomplexes of 1_ and 
[*, respectively, 7 is the support of a ( p -  1)-contour of [1_, and 7, is the 
support of a ( d -  p - 1 )-contour of 1_*, we have 

~gf(V,/~, p ) =  Z {exp[~NP(ExtvO)]} ~gS( O, fl, pldis) 
OcV 

= _ _  i z p ( g ( 7 ) ) l  

x 2gf([Int  7]*,/~*, d - p )  

3gf(V,,/~*, d " p ) =  ~ {exp[~*Nd-P(Extv,O,)]} 
0. c V. 

x2gS(0,,/3 *, d - p l d i s )  

~g.f.(,/ . ,  f l , , d _  p t dis ) = g(7 , , fl,, d _  p ) ( e~*q__l ) N a P(Int "t.) 

x [Z a P(V(7,))[ zg'f([Int 7 , ]  *,/3, p) 
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with 

g(?, fl, P ) =  
~(y, fl, p I dis) 

~<1 
IHP( V(?))I qNP ~(?) Z(Int 7, fl, P) 

g(y , ,  fl*, d - p )  3(7 , ,  fl*, d -  p ]dis) = ~<1 
IHa-P(V(?,))I qUd-'-'(7,) Z(Int ~, ,  fl*, d - p )  

The sums are over all supports of families of mutually external contours 
such that V(O)c~_P-lc V, V(O,)c~([I_*) a p l c  V,. 

Proof. We first consider the first statement and let K denote a sub- 
complex of D_ satisfying the conditions in Lemma 2.1.1 with I =  V. From the 
statement (a) of Lemma 2.2.1 it follows that 

sP \ V  

Let 

zg;K = I1 H 
sP E K \  V(O) sP ~ 0 

where d is restricted to K; then it is clear that we can do the following 
expansion: 

t s P e K \ V  ) O~ V 

From the statement (b) of Lemma 2.2.1 we infer 

[e/~N~(K\V(~ ]Z p I(K)I ] I[Zg;K](K , fl, p ) = 2 g f ( 0 ,  fl, p]dis) 

which gives the result. 
In the case p = 1 and if we assume that the cohomology group HI(K) 

is trivial, we can prove this result in the following way: in this case, 

z g f ( g ,  fl, 1) = z g f ( v ,  fi, 1) = Z(V, fl, 1) (2.4.2) 

The last equality follows from the fact for open complex V, ]Z~ = 1; 
then it is clear that 

z(v, fl, I)= H [ [  
aecO(K)  O~ V sot V\V(O) slEO 

= E eflN'(ExtvO) E e ~Hl~~162 l~ {1-6[da(s')]} 
Oc V crEcO(v(o)) sleO 

we then use (2.4.1). 
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We now consider the second statement; we have by definition 

zgr(7, fl, p] dis) 

= [I Zp 1(V(7))[]-~ ~(7,/3, pJdis) 

= [IZ p ~(V(7))I] ~g(7,/3, P) IHP(V(7))[ qU~ ~(-~ Z(Int 7,/3, P)) 

The proof then follows from relations (2.2.7) and (2.2.5). 
The third and fourth statements are proved analogously. 
The proof of the bounds on g(7, fl, P) and g(?,,/3", d - p )  relies on 

the fact that 

e-flHP.~y(a~+h)<~ ~ e flHPnt)'(da) 

a r  ~rECP l(/nt 7) 

for any h ~ CP(Int 7), which one may easily show by a duality transforma- 
tion. | 

In fact, to have an even closer analog of Lemma 2.3 from ref. 27, we 
introduce diluted and crystal partition functions by 

zdil( V, /3, 

Z~rs~(7,/3, 

Z"r"(O, fl, 

Zaal(V,,/3", d -  

zcryst, ~7,,/3", d -  

cryst Z (O,, /3*,d-  

p) = zg'(P,/3,  p) 

p)  = ,--,~g'f'(~, /3, p I dis) 

P)  = [ I  zcryst(7' /3' P)  
7~0 (2.4.3) 

p) = [(e/~- 1)qp/d-1] u~ P(v*) zgf(l~, , /3",  d - p )  

p) = [(e ~ - 1 )qp/a- 1]ua ~(v(7,)) zgZ(7, ,  /3,, d - -p  ] dis) 

P) = ]~I zcryst(7*' /3", d - -  p )  
7. E0. 

where V and V, are (open or closed) subcomplexes of ~_ and l_*, respec- 
tively. The open subcomplexes lk and I>, are defined as lk= V\B(V) and 
I k , = V , \ B ( V , )  ( l k = V  if V is open). Hence both Zdil(V,/3, p) and 
zd~l(v,,/3", d - p )  are partition functions with ordered boundary condi- 
tion. 

Under the above definitions Lemma 2.4.1 reads as follows. 

L e m m a  2.4.2.  

Zd~(V, fi, P ) =  ~ {exp[I~NP(V\V(O))]) zcryst(0, fl, P) 
O c V  

zcryst(7, /3, p) = g(7, /3, P) D(7, p) Zd"([Int 7]*,/3", d -  p) 

822/58/1-2-15 
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Zd~(V,, fl*, d - p ) =  ~ {exp[#,Na-p(l),\V(O,))]} 
O. c V. 

tryst x Z (0, ,  [3", d -  p) 

cryst Z (~ , , f l * ,d -p )=g(~ , , f l * ,d -p )D(~ , ,d -p )Zd~([ In tT , ]* , f l ,  p) 

where 

D(~, p)  = q-(p/d)NP(Intv) ]Zp(W(]~)) [ 

D(7, ,  d - p ) =  (e ~ -  1)Nd-P(7*)q (1 p/d)N d P(V(7.) ) i z d  p(v(~)=k)) I 

#=f l ,  #,=fl ,+log[(e~_l)qP/a 1] 

The sums are over all supports of families of mutually external contours 
such that V(O)~O_ p l c 12. V(O,)n(D_*)a-P-l c l2,. 

The prefactor in the definition of Zd~(V,, fl*, d -  p) assures that both 
diluted partition functions yield the free energy fp(flH) of the (gauge fixed) 
model with Hamiltonian H p at the temperature fl: 

1 
fp(flH) = lim - -  lo- Z d"' "I v,LNP(V) g tv, fl, p) 

1 
= lira log za i l (v , ,  fl*, d -  p) (2.4.4) 

V . ~ *  N d - p ( v ,  ) 

The limits are over complexes approaching ~_ (resp. ]_*) in the van Hove 
sense: 

NP(B(V)) o (resp. Nd-p(B(~',)) 
NP(~) Nd-P(F',) ~ 0 )  

The proof of the equality of the two limits in (2.4.4) is based on the duality 
formula (2.2.7) and is given in Appendix B. 

2.5. Part i t ion Functions in Terms of Contour  Models  

Our aim is to express partition functions zdil(v, fl, d--p) and 
zdi l (v , ,  fl*, d - p )  (and corresponding probabilities of external contours) 
in terms of two contour models ~b and ~b, living on supports of ( p -  1)- 
contours of D_ and on supports of ( d - p -  1)-contours on a_*, respectively. 
The former will describe the low-temperature phases, while the latter, 
taking into account the duality between ordered and free boundary 
conditions, will yield some information about the high-temperature dis- 
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ordered phase (of the same model). As in the ordinary PS theory, it is 
actually copnvenient to introduce contour models with parameters b and 
b , ,  respectively. The transition temperature/?,  will then be identified with 
the unique temperature for which b = b ,  = 0 and will turn out to be near 
/~o fixed by the equation # = # , .  

The partition function, in a volume V, of a contour model ~b with 
contour weights ~b(V) is given by 

 r(vlo)= Y. I-[ 
0~ V ?,Eg 

where the sum is over all compatible families ~? of supports of contours in 
V such that V(7) n ~_P 1 C2 V. The power of contour models stems from the 
fact that the compatibility is defined pairwise, 7 n 7 '=  ~ ,  for each pair 
7, 7' e 0, which implies that skipping any contour 7 from ~ leaves the family 
3\V again compatible. 

While we refer to, e.g., refs. 8 or 25 or Appendix B of ref. 28 for details 
of the theory of contour models in a form suitable for our purposes, we just 
recall here that introducing 

Lr(Y I ~b) = q~(7) Lr(Int 7l~b) 

one has 

Oc V "./GO Oc V 

with the sum over families of mutually external contours. Partition func- 
tions of a contour model ~b on ( p -  1)-contours on a_ with a parameter b 
are defined by 

b)= E e 
O c V  

and those of a contour model ~b, on (d-p-1)-contours on ~* with a 
parameter b ,  by 

~(V* 1@,. b,  ) =  2 eb*NdP(v(o*))~l~(O*l~)*) 

0. = V. 

To have a good control on partition functions of contour models, one 
relies on their "z-functionality"; in our case contour models q~ and ~b, are 
called z-functionals if they satisfy the estimates 

[~(y)[ ~ C  -~Np(z'), [q~,(y,)[ ~<e zNd-P('Y*) (2.5.1) 
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for every ~ and 7,- Here ~ is a fixed constant depending only on d and p. 
In particular, if ~b and ~b, are ~-functionals, the limits 

1 1 
f (O)=limxp-(-~log~(Vl(~),  f (O , )= l imud_P(v , )  l o g ~ ( V ,  lO,) 

exist and the boundary terms 

a( V] ql) = log ~e( VI ~b) - NP(V) f(O) 
(2.5.2) 

o( V, I~b,) = log ~e( V, I~b,) - N a- P(V,) f (O,)  

may be evaluated by 

]a(VI(~)I<~NP(B(~'))e -~, la(V,l~b,)l<~N d P(B(~',)e -~ (2.5.3) 

Now we may formulate our main statement about the equivalence with 
contour models which will serve as a basis for proving different theorems 
from Section 1. Its assumption may be considered as an extension of the 
Peierls condition from Pirogov-Sinai theory to our case. 

Proposi t ion 2.5.1. Let 1 ~< p ~< d -  1 and suppose that (q is such 
that) 

q--(p/d)NP(V(y)) ]Zp( V('~))I ~ g -2Np(7) (2.5.4) 

and 

qE-(a p)/d]Nd-P(V(y,))[zd-p(v(y,))[ ~e  2*Nd-p~*) (2.5.5) 

Then for every fl there exist >functionals ~b and ~b, and parameters b and 
b, such that 

b + p + f(~b) = b ,  + # ,  + f(~b,) = fp(flH) (2.5.6) 

and 

~(~10) = e ~b+,,)N~Vr ZCryst(,,,/3, p) (2.5.7) 

for every (p--  1)-contour ~ on 0_, and 

Y'(7, I~b,) = {exp[ - b ,  +/~,)  N d P(V(7,))] } ZCryst(7,, fl*, d -  p) 

(2.5.8) 

for every ( d - p - 1 ) - c o n t o u r  7,  on [1_*. 
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Moreover, m i n ( b , b , ) = 0  and there exists a unique temperature 
fi,(q, p, d) such that for fle [0, fl,) one has b > 0 and b,  = 0, b = b,  = 0 for 
f i=fl,  and b = 0 ,  b,  > 0  for f i e ( f t ,  oe). 

Remarks. 

1. Verifying the hypothesis of the proposition (generalized Peierls 
condition) involves an estimate on the cardinality of the group ZP(V(7)), 
resp. Z d P(V(?,)). This may be a complicated topological question and we 
shall verify (2.5.4) and (2.5.5) (for q large enough) only in particular cases, 
namely, for p = 1 (scalar model) with d>~2 and p = 2 (gauge model) for 
d =  3 (cf. Appendix B). For p = 2  with d =  4, these hypotheses have been 
very recently proved in ref. 14. 

2. The equalities (2.5.7) and (2.5.8) lead immediately to 

~ (  VI ~b, b ) =  {exp[--#NP(V)]  } zdi'( V, fl, p) 

= ({exp[- f lNP(I ) )]}  Egr(/), fl, p)) (2.5.9) 

and 

~ ( V ,  I qi,, b , ) =  { e x p [ - / ~ , U  a P(I)',)] } zd i ' (v , ,  fl*, d - p )  

= ({exp[- - f l*Nd-P(I ) , ) l }  ~gr(I2, ,  fl*, d - p ) )  (2.5.10) 

This combined with (2.5.7) and (2.5.8) imply that the contour model ~b with 
parameter b (resp. ~b, with b , )  reproduces the probabilities of external 
contours governed by the Hamiltonian H p (resp. its dual) under ordered 
boundary conditions. This will eventually allow us to distinguish ordered 
and disordered phases by evaluating the expectation ((~[aP(sP)]) for some 
fixed s p. 

Proof. We shall construct ~b and ~b, following the inductive proce- 
dure from ref. 25. First of all one observes that for every ~, ~,  >~ 0 one may 
define, by induction in NP(V(7)) and Nd-P(V('y,)), contour functionals ~b ~, 
~b** satisfying 

~f (7[ (U)={exp[ - (~z+#)NP(V(7) ) ]}  zcrY~t(y, fl, p) (2.5.11) 

~e(7 , [ ~b,%) = {exp[ - (c~, + # , )  Nd-P( V(?,))]  ZCrYSt(7,, fl*, d -  p) 

(2.5.12) 

Let us turn these functionals in an artificial way into r-functionals by 
defining 

q~(7) = min(~U(7), e-~NP(~)) 

6,*(7,) = mln(~b**(~,), e -~u~-~(7*)) 
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Define further 

b,  = sup{~ [~ + # + f ( 6  ~) ~< fp(flH) } 

b* = sup{~, [~, + # ,  + f(6**) ~< fp(flH) } 

We shall show that 

b + # + f ( 6  b) = b,  + # ,  + f(6b**)) =fp(flH) (2.5.13) 

by proving that f ( ~ )  and f(~**) are continuous in ~ and ~, .  This follows 
for, say, f ( ~ )  from the fact that 

1 
- - l o g  ~ ( V ] 6  ~) 
NP(V) 

is Lipschitz uniformly in V. Indeed (29) 

1 d log ~e(V] 6~ ) 
N P( V) do~ 

Y(v\[7]I#) ~< 2 d # ( ~ )  . ~(vl~ ~) 

<~ ~ e zN:(7) 2NP(V(7)) ~< ce ~ 
y: dP 6 "~ 

(2.5.14) 

Here the sum is over all contours containing a fixed cell s p and 

~(v\[7]16~) = ~* H #(f) 
6 ~  V : ~ 0  

where the sum 5Z* is over 0 all compatible with ~. 
We use the fact that either (d/de)q~(7)= 0 or 

~ #(v) = d4~(?)  

= ( d / & )  ~(TI~U) ~(Int y lq5 ~) - Lr(71 ~U ) (dido) ~ ( I n t  7]q5 ~) 
[ ~ ( I n t  7 I~U)] 2 

~<[q~=(,)l{dlogLr(TlqS~) + d l o g ~ ( I n t , l q S = ) }  

<~ 2NP(V(7)) ]~U(7)] 
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since (dido) log ~ (7  I~U) = -NP(V(7)) according to (2.5.11) and 

d log ~ ( I n t  7I~U) 

1 d ~e(~ i ~U) 
- Y(intTiqt~)O~nt ~ H 

_ 1 ~ [-NP(V(O))] 1-I ~r ~c~) ~<NP(IntT) 
~ ( I n t  7[~U) 0=~nt~ ~0  

using again (2.5.1). Here 0 is a family of external contours in Int 7. 
Now we shall show by induction in NP(V(7)) and Nd-P(V(7,)) that 

~b b and ~bb, * are actually r-functionals, i.e., ~b= q~b and ~ *  = ~bb, *. Suppose 
that this is known for all ~ with NP(V(~))<.k and all ~, with 
N a P(V(~,))<~k and consider a contour 7 with NP(V(y))<~k+ 1. Notice 
first that from the induction hypothesis and (2.5.2) one has 

~e(Int 7l~b b) = ~e(Int 7[~ b) 

= exp[f(q  ~b) NP( Int 7) + a(Int 7 [ ~b)] 

Observing that for any contour ~, contributing to ~ ( [ I n t  7]*l~bb, *) one 
has ~, c [-Int 7]*, then, using again the induction hypothesis, 

~ ( [ I n t  7]* [ ~bb, *) = Y'([Int  7]* [ q~b, *) 

= exp {/(~b, *) Ua-P([ Int 7]*) + a ( [ In t  7]* [ ~*)}  

Starting from the definition (2.5.11), referring to Lemma 2.4.2, to the above 
observations combined with an obvious inequality 

~ ( [ I n t  V]* [~bb, *, b,)~< {exp[b,N a P(l-Int V]*)]} Y'([Int  7]* [~b, b*) 

(2.5.15) 

and the equality N a P([Int 7 ] *) = NP( Int 7), and to the equality (2.5.13), 
we get 

~bb(7) = {exp[--  (b + #) NP(V(7)) ] } 

= g(7, fl, P) D(7, p) 

zcryst(7 , fl, P )  

Lr(Int 71q5 b) 

x { e x p [ - b + # )  NP(V(y)) + # , N  a P([Int 7]*)]}  

Y'([Int  7]* ]~bb, *, b , )  
x 

Lr(Int 7[~b b) 
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~< g(7, fi, P) D(7, P) exp{ - [b + # + f (~b)]  NP(int 7) - (b + #) NP(7) 

+ [b ,  + # ,  +/(q~b**)] UP(Xnt 7)} 

x exp{a(Int 71q~ b) + a([ Int  7]* I q~*)} 

= g(7, fl, P) D(7, p)exp{ - [b ,  + # ,  + f(~b,,)_.f(q~b)] NP(7)} 

x exp{a(Int 71q~ b) + a([ Int  7]* [ cb**)} (2.5.16) 

Similarly, for 7, with Nd-P(7,)~<k + 1, we get 

z c r y s t ( 7 $ ,  f l * ,  d - p )  
r = { e x p [ - ( b ,  + # , ) U  d P(V(7,))] } ~----~(~, r r  

~< g(7, ,  fl*, d -  p( D(7, ,  d -  p) 

• exp{ - [b + # + f ( r  _ f(q~b**)] U d P(7,)} 

• exp{a(Int 7, I q~b, *) + a([ Int  7 , ]*  I q~b)} (2.5.17) 

Taking into account that Ig(7, fl, P)I ~< 1 and Ig(7, ,  fi*, d - p ) J  ~< 1 and 
using the estimates # + b >1 # = fl, # ,  + b ,  ~ # ,  >>. (p/d) log q, and (2.5.3), 
and evaluating 

]f(~b)[ ~<e ~ and [f(r ~<e-~ 

we finally get 

Ir <. e -~gr(~), 1r <.e -~g~ P(~*) (2.5.18) 

Taking r = Cb and r  = qi~, thus immediately yields (2.5.7) and (2.5.8) and 
also (2.5.6), which is actually identical with (2.5.13), since Cb=q~b and 
Cb, _ ,~b, $ - - Y ~  �9 

To prove the second part of the proposition, let us first suppose that 
min(b, b*)>0 .  Referring to the fact that the Lipschitz constants of f ( ~ )  
and f(q~**) are at most 1/2 [cf. (2.5.14)], one would then prove that there 
exists e > 0 and parameters b, ~ ,  such that 

+ # + f(q~) = b,  + # ,  + f(q~**) =fp(f lH)  - e 

Using this equality instead of (2.5.13), one might show in the same way as 
above that ql z and r are T-functionals and thus 

+ # + f(r  = b,  + p* + f(r <fp(f lH) 

in contradiction with 

fp(flH) <~ b + # + f(~fi)  
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following from 

Zai'( V, fi, p ) =  {exp[/xNP( I))]} ~e( VI ~fi, b) 

~< {exp[(/x + b) NP(12)] } ~e(V] ~b ~) 

Finally, we shall show that, for a fixed q, there exists only one r ,  for 
which b = b ,  = 0. To see this, we notice that at such a point necessarily 
h(r)= h,(r), where h(fl)= /x + f(qS b=~ and h, (r )= #,  + f((~b**=~ Thus, 
our aim is to prove that h(r) and h,(r)  intersect in a single point. 

Consider first/X and/X, as functions of fl (cf. Fig. 1). They intersect at 

q - 1  
flo = log -1 +p/a q - 1  

An important fact is that the slopes of /X and /X, around flo differ 
significantly: 

-~  ,=~o =1  

while 

d/X,dr /3=b'o = qp/d-- 1 

is very small. Taking into account that If(q~b=~ If(~b**=~ as well as 
I(d/dr)f(~b=~ [(d/dfl)f(~b**=~ may be bounded by e ", one shows 
that the functions h(r) and h*(r ) are contained in a tiny strip around #(r)  
and /x , ( r ) ,  respectively, and have entirely different slopes. Thus one may 
conclude that they intersect in a single point r ,  near rio. 

p/d log q 

= -(1 -p/d ) log q 

P - ,  

It, 

Fig. 1. /2 and # ,  as functions of ft. 
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To show the bound on I(d/d~)f(~b=~ [and on I(d/d~)f(6b**=~ 
one proceeds in a similar fashion to the proof of (2.5.14). 

When estimating I(d/d~)f(~bb=~ we again use (2.5.11) with c~ = 0 and 
evaluate I(d/dB) log ~'(~ I r176 and [(d/d~) log ~ ( I n t  ?l~b~-~ in terms of 
mean energies in ensembles corresponding to crystal and diluted partition 
functions, respectively, with bounds proportional to NP(V(7)), resp. 
NP(Int7). | 

3. PROOF OF T H E O R E M S  

3.1. Proof of Theorems 1.1 and 1.4 

The discontinuity at/?, of the derivative of the free energy with respect 
to 13 is associated with the fact that the expectation of 3[da(sP)] takes 
different values according to the ordered and free boundary conditions 
(these expectations are respectively right and left derivatives(3~ To 
introduce these boundary conditions, we let A be a rectangular box, E(A) 
the envelope of A, and V the union of the envelope and the fringe of A, 
V=E(A)wF(A).  The free b.c. are obtained as thermodynamic limit with 
closed complex E(A), while the ordered b.c. are obtained with open 
complex V: 

<" >f(/~, p) = lim ( .  >(E(A),/~, p) 
A TZ d 

{.>o(/~,p)= lira {.>(V,B,p) 
A ~ )7 d 

We define analogously the above b.c. for the dual model. Let us now 
consider the expectation value 

< 6[ d~(sP) ] >( V, [3, p)= 1 - Prob { d~(sP) ] #0  (rood q) I"ord'} 

Since for every configuration a ~ C p- 1(~_) such that da(s p) # 0 (mod q) and 
d~(sP)=O (mod q) on O_\V there exits a contour ~ belonging to a family 
of external contours 0 c V such that sP~ V(7), the above probability is, 
referring to the relations (2.5.7) and (2.5.9), bounded by 

e  r(01r b) 

,:s,~.e 0=v: ~ ( r l e b ,  b) 
),e0 

For the dual model we use the relations (2.5.8) and (2.5.10) to get 

<6 [da , ( J ,  P)]>([E(A)]*, fl*, d - p )  

�9 ~ , o,= EE(A)]*: ~e(EE(A)]* I ~bb, *, b , )  y . , S .  ~ y .  
7.  ~ 0 .  
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Whenever the inequalities (2.5.4) and (2.5.5) are satisfied, Cb and q~b** are 
r-functionals (cf. Proposition 2.5.1), and the parameter b vanishes for 
/3 ~>/3, while b .  vanishes for/3 ~</3, Hence, using the standard estimates on 
probability of contours for contour models, we get 

(5[da(sp)])o(fl, p)> 1 - O ( e  ~) 
d p <8[da,(s, ) ] ) o ( / 3 , , d _ p ) > l _ O ( e  ~) 

Applying the relation (2.2.9), we get 

( 6[ da(sP) ]f(fl, p) < O(e ~) + O(q l/d) 

whenever /3 >~ /3,(q, p, d) 

whenever fl ~</3~ 

whenever fl ~</3, 

Since (2.5.4) and (2.5.5) are satisfied for p =  1, d>~2, and d=3 ,  with 
/> cst log q, as proved in Appendix B, Theorems 1.1 and 1.4 are implied. 

We notice that we also get the positivity of the magnetization in 
Theorem 1.2 with an analogous proof, since for every configuation 
o.@C p 1(~_) such that a(Xo)#O (modq) and a ( x ) = 0  if xen_\V there 
exists a contour 7 such that V(7)= Xo. 

3.2. Proof of Theorem 1.3 

For convenience we shall use the notations introduced in Section 2 to 
rewrite surface tensions r~1,~2(/3) and z~'~(/3). Namely, we let V be the 
envelope of AL, M, V= E(AL, M)-We define subsets of sites in B(V), B+(V), 
and B -  (V) by 

B+(V)= {x~2~lx~B(V)  n ~o, xd>O} 
B (V)={xc7/dIx~B(V)~n_  ~ 

Let us introduce partition functions 

Z(V,/3, 1 I bc) = ~ e - f lH~(q )xbc (0  ) 
a ~ cO(v) 

where H is defined by the relation (2.2.2) and )(bc(0~) characterizes 
boundary conditions. In terms of these partition functions the surface 
tensions V"~2(/3) and ~'f(/3) may be rewritten as 

1 z (  v,/3, 1 j~l, ~:) 
v~,~(fl)= Lim ~ l o g  

L'[oo;MToo [-Z(V,/3, 1 [~1) Z(V,/3, 1 t0~2)] 1/2 

1 Z(V,  fi, 1 ]c~, f) 
z~'f(fl)= Lim ~ l o g  

Lr [Z(V, fl, l l~) Z(V, fl, I I f)]1/2 
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where the corresponding characteristic functions are defined by 

F"~(~ = [ I  6 [o-(x-~) ]  
xEB+(V}  

F(o)= [ [  6[~(x-~)]  
x~B(V) 

F '~(~) = H 6[~(X-- ~)], 
x~B+(V) 

Zr(O ") = 1 

[[  ~ [ ~ ( x - ~ ) ] ,  
x ~ B  (V) 

3.2.1. Proof  of the S ta tement  (a)  of the Theorem. Con- 
sider the partition function Z(V, fi, 1 [ ~ 1 , ~ 2 )  and observe that for any 
configuration a from C~ such that Z~'~2(a)= 1, there exist, in V, two 
disjoint components U (up) and D (down) satisfying the properties: 

1. The boundary B(U) of U contains B+(V) and the boundary B(D) 
of D contains B (V). 

2. The lattice sites in B(U) are such that t r (x )=e l  while for the 
lattice sites in B(D) it is a(x)= ~2. 

3. The links s 1 of the complexes F(Uc~ D_ ~ r~ U and F(D c~ ~_o) c~ D 
are disordered a(Os 1) :/=0 (mod q). 

We shall write in this section F(K) instead of F(Kc~ D_~ Let us define 
the subcomplexes 71, 72, and I by (see Fig. 2) 

71=F(U)~V, ?2=F(D)c~V, I=V\ (UuDwyaW72)  

M 

T 
M 

Ldl f= 

]'I 

D 

k,r 
Fig. 2. The contours  71 and '/2 divide V into two "ordered regions" U and D and a 

"disordered" one I. 
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We notice that the fringe of I equals the symmetric difference of 71 and 72. 
We have 

F(I)=71 A 72=71 k.fl'~2--71F"~ 72 

and let 

V(71 A 72 )=Iw (71 A 72) 

Thus, the partition function Z(V,/~, 1 I~1, ~2) will be written in terms 
of partition functions defined on the subcomplexes U, D, and V(7 ~ A 72). 
Namely, 

z ( v ,  fl, 11~1, ~ )  

= Y', z ( u , A  11~,)Z(D, A llo~=)Z(V(71 • 72),A 11a~,~2) 
71 ;Y2 

where 

Z(V(y, A 72),fl, 11~, ~2) 

~ c O ( I )  s l  ~ ~1 ; 
x ~ ~s I r~ B ( I )  

{ 1 - 6 [ a ( x -  ~2)] } x FI 
s2~ 72; 

x E cqs2 c~ B ( I )  

It is easy to show that 

Z(V(]) 1 A 72), fl, ]I~1, ~2) ~ ~--~'gf(v(71 ~ 72), fl, 1 tdis) 

From the symmetry of the Hamiltonian we then deduce 

Z(V,/~, 11~1, ~2) 

[z(v ,  fl, 11~i) z(v,/3, 11 ~2)] 1/2 

~< Z Z(U, fl, 1 [0)Z(D, fl, 110) zgr(V(71 A 72), fl, lldis) 
~,;~= z(v,/3, 11o) 

The above partition functions are related to the parametric contour 
statistical sums defined in Section 2.5 by 

Z( V,/~, 110) = e ~Nl(v) ~ (  V I ~b b, b) 

Z(U, fl, l l0)=e/~NI(U)~(UI~ b , b )  

Z(O,/~, 110)=e ~ul(z') ~(Dt@ b, b) 

~Fgf(V(~l ~ 72),/~, 1] dis)= e (b+~) N I ( V ( y l  ~ 72))~b(,~l ~ '~2) ~(I]  Cb) 
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For fl>~fi,(q, p = 1, d) the parameter b vanishes (cf. Proposition 2.5.1). 
Thus, 

z(v,/~, 1 I~1, ~2) 
[ z ( g ,  fl, l l ~ l ) Z ( g ,  fl , ]lo~2)] 1/2~ Z ~b(71A 72)e ~NI(ylC~Y2))  

?! ;72 

Since ~b is a r-functional as shown in Appendix B and the contours 71 and 
72 are such that N1(7)~> L a- 1, the proof follows in a standard way. 

3.2.2. Proof of the s ta tement  (b)  of the Theorem. We 
consider the partition function Z(V, fl, 1R0, f). For each configuration cr 
belonging to C~ and such that )~~ 1 there exists a closed connected 
component U c V such that the boundary B(U) of U contains B+(V), 
B(U) ~ B+(V), and all s t in F(U) n V are disordered: a(Os 1) # 0  (mod q). 

We introduce D as the closed component defined by D =  
V\[Uw (F(U)n V)] and we denote by F(D) the fringe of D (see Fig. 3). 
The fringe F(V) of V will be decomposed into subcomplexes F+(V) and 
F -  (V), F(V) = F + (V) ~ F -  (V), where F + (V) is the intersection of the 
fringe F(B +) of B+(V) with the fringe F(V) of V, F+(V)=F(B+)~F(V) 
[and similarly F -  ( V)]. 

Introducing the cell complex 7 = F(U)\F+(V), we find that the parti- 
tion function Z(V, fl, 110, f) may be bounded by 

~Z(U, fl, 110)Z(D, fl, l if) 

Ld-I 
'11 lit 

T 
M 

U 

Fig. 3. Contour associated with the interface between an ordered and the free phase. 
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Now we rewrite this expression in terms of parametric contour statistical 
sums 

Z(U, fl, l lO)=e~N'(V):,~f(UlOb, b) 

Z(V,/~, 110)--e  flNl(V) ~f ( Vl ~ b, b) 

Z(D, fl, 1 If) = q NI(F(D))/2d eu*N~(D) ~f(n* l ~b, *, b ,) 

Z( V, fi, 1 If) = qN~(F(V))/:d e~,N~(V) ~(  V, i ~bb,,, b , )  

The last two identities follow from (2.2.7), (2.4.3), (2.5.9), and Lemma B 
(Appendix B). Whenever fl=fl~(q, p= l, d), the parameters b and b, 
vanish; we then use 

Y'(UI ~b b) 2"(D* ] ~bb, * ) 
[~r(vl Oh) y ( v ,  14~,,)] i/2 

exp [ f ( r  NI(U) + f(~b,) NI(D) -1 exp[2Nl (y)e_ , ]  
~< exp[/(~b) NI (v )  + f(~b,) N1(V)] 

which is proved as in ref. 18 and f l+f(O)=l~,+f(O,)  and N I ( v ) =  
NI(U) + N~(D) + NI(~ c~ F(D)) to get 

z ( g ,  fi, 1 Ic~, f) 

[Z(V,/3, 1 I~)z(g , /3 ,  l l f ) ]  1/2 

E q -- NI('~' r~ f(D))/d+ NI(F(D))/2d NI(F(V))/4d c2Nl(y)e-~ 

Y 

From the identity 

NI(F(V)) N~(F(D))+ NI(7)_2N,(7~F(D)) 
2 

(3.1.1) 

we get a bound on the rhs of (3.1.1) by 

) ] [_ \ 2d 2e " NI(~) where r~>l~ 
' 2d 

Observing that N~(7)~> L d- 1, we conclude the proof of Theorem 1.3. 

3.3. P r o o f  of  T h e o r e m  1.2 

We first consider the statement (b). As seen in Section 3.1, our proofs 
are based on contour expansions with respect to ordered b.c. Thus, we 
shall first compute the dual of (q6 ..... y -  1 )f(fl) in order to obtain ordered 



230 Koteck9 e t  al.  

b.c. We shall use the notation of Section 2 and we put K =  E(A). Taking 
into account that 

q 1 

q6a~,~,,-l-- Y~ e(2izr/q)m(r %) 

m = l  

we obtain, by the procedure of Section 2.2 and using the fact that the 
homology group H~(K) is trivial, 

(q6 . . . .  y -  1 )r A(fi)= (q6 . . . .  , -  1)(K, fl, 1) 

v i Zm(K*, fl*, d -  1) 
= ~ Z(K*,/3",  d -  1) (3.3.1) 

m = l  

Here the modified partition function Zm(K* , fl*, d - 1 )  is defined by 

Zm(K*, fi*, d -  1 )=  ~ exp[ - f i*HaK71(da+m*(c) ) ]  
a e C  a 2(K*)  

c is an integral 1-chain such that its boundary consists of x and y. The 
a-1 and its d -  1 chaim ,(c)  is the dual of the chain c: for any ( d -  1)-cell s ,  

dual s 1, ,(c)(sd, - 1) = c(sX). 
Since K is closed, K* is open and we have ordered b.c. 
We shall now expand this modified partition function in terms of 

external contours. Due to the frustrations the family of external contours 
will always contain a contour 7,  such that (V(7,))* contains x and y. 
More precisely: 

a 1 is ordered For any configuration a s Cd-Z(K *) we say that a cell s ,  
if (de + m * (c))(dd, 1) = 0 and that is disordered otherwise. Therefore: 

(i) For  the d-cell , ( x ) = s ,  a and , ( y ) = s ,  d there does not exist a 
a i in the boundary c?s, d ,d configuration for which all the cells s ,  of s ,  and in 

the boundary ~ ,,d ,,d vs ,  of s ,  are ordered. 

a different from *(x), , ( y )  there does not exist a (ii) For  the cell s ,  
configuration ~r for which one ( d -  1)-cell of c3sJ,) are ordered. 

The above two properties are consequences of the relation dd= O. 
It follows that every configuration a contains a family of mutually 

external contours 0 ,  satisfying: 

d 1 1. ( d a + m * ( c ) ) ( s d , - 1 ) = O i f s ,  ~ E x t x , 0 ,  and (da+m*(c) ) ( sd ,  1) 
r  d 1 if s ,  ~ 0 , .  

2. In each such family 0,  there exists a unique contour 7,  such that 
{x; y} e [V(7 , ) ]*  and for every such contour 7,  there exists an integral 
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2-chain c7. whose boundaries are , (x )  and , ( y )  and all the cells for which 
c~.(s~-1)r  belong to V(7,) ({c~.} c V(7,)). 

Then Zm(K*, fl*, d -  1) is expanded as 

Z m ( K *  , f l* ,  d -  1) 

= S S 2 
7.: 0. oK* :  crEC d 2(K*) 

{x;y}e[v(7.)]* ~.=o. 

where 

Zm exp[ , a -  --fl HK. l(de+mc,.)] 

Zm: H (~Fd~(sd l ) l  H {l-cSF(d~r-l-mcT.)(S* ' ) l}  
d- 1E EXtK*0. sO'. - 1 E 0. s .  

From the statement (b) of Lemma 2.2.1 we get 

Z m ( K *  , f l* ,  d -  1) 

= ~ ~. IZa-2(K*)i exp[fl*N a I(ExtK.0,)]  
7, : 0. ~ K*: 

{x;y}e[V(7.)]* 0.~7, 

x 2 g f ( 0 , \ 7 , ,  fl*, d -  1 ]dis) -gf",  ~.~ t~,,  fl*, d -  11dis) (3.3.2) 

where 

2~;f(7,, fi*, d -  I I dis) 

= Z {exp[--fl*Hdv;~)(z+rncv.)]} 
2~zd-l(v('y.)) 

[ I  
d 1 S. ET. 

{I --6[(z+mcv.)(S,-')] } 

We proceed as in the proof of Lemma 2.4.1 to get, from (2.2.7) and (2.2.5), 

~ r ( 7 , ,  fl*, d -  1 I dis) 

~< IHa- l (g (7 , ) ) t  q Nd 2(7*)Z(Int 7,,  fi*, d -  1) 

= IZ d 1(V(7,))1 ~gf ( [ In t  7 , ]* ,  fl, 1) 

which is up to the term g(7.,  fl*, d -  1) the rhs of the fourth identity of 
Lemma 2.4.1. Thus, by defining 

zcrystz~ ~g.f. m t ; * ,  /~*, d -  1)=  [(e ~ -  1)ql/d-1] Nd-l(V(7*)) ~ m  ( 7 . ,  /~*, d -  1 Idis) 

822/58/1-2-16 
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and referring to the proof of Proposition 5.1 [-cf. (2.5.17) and (2.5.18)] we 
get 

~g.f. ~m (7,, /~*, d -  1 I dis) 
{exp[-b,+fl*)Na-~(V(7*))]} y,(int  7, i ~bb**) 

cryst Z,~ (7,,/~*, d -  1) 
-- { e x p [ - b , + # , ) N  a 1(V(7,))]} ~e(intT,  lCb**) 

~< D(7, ,  d -  p) exp{ - [b + g +f(~b b) - (f(r N a- P(7,)} 

x exp {a(Int 7, ]~bb, *) + a( l int  7, ] * [ ~bb) } 

~< exp[- -~N a- 1(7,)] (3.3.3) 

which, combined with (3.3.2), (2.4.3), and (2.5.8), leads to 

Z~(K*, fl*, d -  1) 

<<.l Za 2(K*)[ {exp[fl*Na-l(K*)] ~ e x p [ - - r N  a 1(7 , )  ] 

{x;y) e [ v(7,)3" 

• Z {exp[b,Na-l(V(O,))]} ~e(0, \7 ,  l~bb**)=~(IntT, l~bb**) 
0. oK*:  
0. by .  

Whenever/~ ~</~, (q, p = 1, d), the parameter b,  vanishes; therefore 

Zm(K*,/~*, d -  l) 

~< ]Z d 2(K*(] {exp[fl*Ua-l(K*)]} ~(K*l~bb, *, b , )  

x y '  e x p [ - z N a -  1(7,) ] 

{x;y} e [ v(7,)]* 

= Z(K*, p*, d -  1) ~ exp[ - - zN d 1(7,) ] 
Y.: 

{x;y} ~ [ v(7,)]* 

Since the above contours are such that Na-~(7,)>~d(x,-y), referring to 
(3.3.1), we conclude by standard arguments that the inverse correlation 
length is strictly positive for/~ >//~,. The positivity of the magnetization was 
proved in Section 3.1. The remaining part of the theorem may be proven in 
the same way as in ref. 13. 

3.4. Proof  of  Theorem 1.5 

According to the notation of Section 2, we introduce the ordered and 
free b.c. as in Sections 3.1 and 3.3 and define 
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(qcS~(~),o- 1 }r(fl) = lim (q6~(w),o- 1 } f  (fl) 
A ~ Z  d 

(q6~(~),o- 

= lim (q5~(#).o- 1 }(E(A), fi, 2) 
A ~ Z  d 

1 }o(fi) = lim (q6~(~e),0- 1 }o (fl) 
AT Zd 

= lim (q6~(.~), o -  1 }(E(A) w F(A), fl, 2) 
ATZ a 

Here A is a rectangular box which contains the loop 2", and 5~ denotes the 
integral 1-cycle, which takes the value 1 on the oriented 1-cells from 2" and 
is zero otherwise (the orientation of a link in 2" is clearly one of the two 
orientations such that ~ = 0). 

3.4.1. P r o o f  o f  Area Law Decay .  The area law decay is 
obtained with free b.c. Hence we shall first compute the dual of the Wilson 
parameter to obtain ordered b.c. in order to apply a contour expansion. 
We let K =  E(A) and proceed as in the proof of Theorem 1.2 to get 

where 
2~ 11 Zm(K*, fl*, d -  2) 

(q6~(w),o - 1 }(K, fi, 2) = Z(K*, fl*, d -  2) 

Zm(K*, fl*, d - 2 ) =  ~ exp[ - f i*H~.Z(da+m �9 (c))] 
a e C  d 3(K*) 

Here c is an integral 2-chain in K whose boundary is ~ :  ~?c = s The 
a- 2 and (d -2 ) -cha in  �9 (c) is the dual of the chain c: for any (d-2)-cel l  s ,  

its dual s 2, *(c)(sa, -2) = c(s2). 
We shall expand the above modified partition function in terms of 

external contours. Due to the frustrations, the family of external contours 
0,  contains always a contour 7, such that IV(7,)]*  ~ 2'.  We proceed now 
as in Section 3.3. We have 

Z m ( K * , f l * , d -  2 ) =  ~, IZa-3(K*)] exp[fl*N a 2(ExtK,0,)] 
7. 0. cK*:  

{~}*=v(~.) 0.='e. 

x E g f ( 0 . \ 7 .  , fl*, d -  21 dis) zglr(7., fi*, d -  21 dis) 

where the last partition function is defined by 

~g.f. 
a m  ( 7 . ,  ]~*, d - 2 l d i s )  

= Z 
zs Za-z(v(~,.)) 

exp[-fl*H~g2.)(z+mcT.) ] H 
d 2 s .  E)). 

{1- a[(~ + m%)(J, ~)]} 
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and satisfies 

~g.f, ~,~ (7,,  ,8", d -  1] dis) 
{exp[ - (b*+,8* )N~-2 (g (7*  ))] } y,( int  7,  i ~bb**) 

~<exp[ -zN d 2(7,)] 

according to the proof of Proposition 2.5.1. Therefore 

Zm(K* , ,8", d - 2 )  

I zd -  2(K *I ) e fl*Na I(K*) E e_zNd_2(y,) 
Y, 

{~}*= v(~.) 

x ~ eb*N~-~(v(~ 
O,=K* 
?,.cO. 

and for ,8 <~ ,8,(q, p = 2, d) we then get 

Zm(K$ , ,8", d-- 2) ~< Z(K*, ,8", d -  2) ~ e ,N~ ~(~,) 
7. 

(~}*= v(~,) 

Since for all contours occurring in the above sum the number Na-2(7 , )  
is greater than the number of plaquettes of the minimal surface with 
boundary ~ ,  the proof follows by standard arguments. 

3.4.2. Proof of Perimeter  Law Decay. Our proof is based on 
a contour expansion on (q6~(z?),o- 1 )(K, ,8, 2), with K =  E(A)w F(A). It 
is useful to define the following modified partition function for an open 
subcomplex V of K: 

~g.r.( V, ,8, 2) = ~ e (2i~/q)c~z(<v) e-~H~(z) (3.4.1) 
z ~ z2(v) 

where c is an integral 2-chain satisfying 8c = ~ and c I v is the restriction to 
V of c. Let us remark that 

(q3~(~),o- 1 )o ('8)= (q3,(~), ~ _ 1 )(K, fl, 2) ~ fi, 2) (3.4.2) 

since the cohomology group H2(K) is trivial. 

Lemma 3.4.1. Let V be an open subcomplex of K; then 

~-~g'f'(v~ fl, 2 ) =  E -PflN2(Extv0) --c~'g'f40,v, fl, 2 [ d i s )  
ocv  
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where the sum is over all supports of families of mutually external contours 
satisfying V(O) c~ ~_1 c V and 

,-a~gf(o, fl, 2[dis) 

= ~ e-~"~,o,(~) e(2'~/q)~(c,~,o,) [I  [1 - 8(z(s2))] 
z~Z2(V(O)) s2eO 

= [ I  Z~f(7,/~, 2ldis) 
y~0 

Proof. We define ZP;K as in the proof of Lemma 2.4.1; thus 

{s21~x\v~[da(s2)] e(2i~/q)~d'~(c)} (K, fl, 2) 

= ~ [Z~;K e~2i'/q)~a~(~)]( K, fl, 2) 
O~V 

We use the statement (b) of Lemma 2.2.1 to deduce 

- ~.~ t (K, fi, 2)=  ,ZI(K), e3NZ(K\V) 3g ' f ' (v ,  fl, 2) 

[Z2;Ke(2in/q)~da(c)](K, fl, 2)= ]ZI(K)] e#U2(ExtKO),.~g'f'(O, fl, 21 dis) 

and we then derive the result. | 

The family 0 of external contours can be divided into two subfamilies: 

1. 7 ~ 0 r 1/(7) ~ 5 a ~ ~ ,  or for each c such that Oc = ~ ,  there exists 
s2~ V(7) with c(s 2) = 1. 

2. 7~0~-V(7)c~ { 5 8 } = ~ ,  and there exists c such that 8c=L~ and 
for each s2~ V(7), one has c(s 2) = 0. 

The perimeter law will be a consequence of the following result. 

k e m m a  3.4.2. Assume fl >~ fl,(q, p = 2, d) and let 

{exp[ - - f i N 2 ( V ( 7 ) )  ] } '-~g'f'(7, fit,  21 dis) 
~ ( 7 )  = 

{exp[--/CN2( I~t 7)]} ~gr( I~t 7,/3, 2) 

Then 

(a) {exp[- /~S2(V)]} ~gS(v,/~, 2 )=  ~ 1~ ~9~(7) 
OeD(V) 7~0 

(b) ~'~(7) = ~b(7) if y ~_0 

(c) I~(~)1 ~r if ~_0 
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Proof. To prove statement (a), we use the Lemma 3.4.1 and iterate it 
on zgr(Ifit  7, fl, 2). 

Whenever fl >~ fit, 0 satisfies 

~b(7) - {exp[ - fiN2( V(7))] } 3gr(7, fl, 21 dis) 

{exp[ - f lN2(Int  7)] } zgf(Ii~t 7, fl, 2) 

according to Proposition 2.5.1. Since for any 7 e 0 one has 

Z~.r.(?, fl, 2 J dis) = 2gr(7, fl, 2 ] dis) 

~gr(Ifit 7, fl, 2) = zgr(Ifit 7, fl, 2) 

statement (b) follows. 
The proof of statement (c) is analogous to the proof of statement c of 

Proposition 6.1 in ref. 14. | 

The relation (3.4.2) combined with Lemma 3.4.2 and Proposition 2.5.1 
leads to 

(q6~(.v),o - 1 )0  (fl) = ~, 

Applying the cluster expansion (24'33"34) to both the numerator and the 
denominator and observing that the corresponding truncated contours 
functions ~br(C) and ~ ( C )  coincide for clusters C consisting only of 
contours from _0, we get the bound (c) of Theorem 1.5. 

The statement (b) is then a consequence of the following inequality(3~ 

lim cos ma(~Lf) (fl +e) >~ cos ma(Gf) (fl), e>lO 
~ 0  

since 

q ~ 2~ 
q6~(~),o-  1 = ~ cos - - m a ( ~ f )  

m=l q 

This ends the proof of the theorems. 

A P P E N D I X A .  CELL C O M P L E X  F O R M A L I S M  

A.1. General  Def in i t ions 

The cell complex formalism is very efficient in dealing with topological 
problems inherent to the q-states Potts gauge model. We first introduce it 
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in an abstract sense along the line of ref. 26 (cf. also refs. 35 and 36), and 
then consider as a particular example a hypercubic lattice 7/d. 

A cell complex K is a set whose elements are called cells such that: 

1. A nonnegative integer called dimension is assigned to each cell. 
The upper bound of the dimensions of all cells is called the dimen- 
sion of the complex. 

2. To each cell s p of dimension p (a p-cell) there corresponds 
another p-cell ( - s  p) of the same dimension and called the cell of 
opposite orientation. 

3. An integer I(sP; s p - l )  called the incidence number is assigned to all 
pairs of cells (s p, s p - l )  in a such way that 

I ( - s n ; s  p 1 ) = I ( s P ; - s P  1 ) = - I ( s P ; s p - 1 )  

A cell complex is called an a-complex if 

E I(sP;sP 1)I(  Sp - I ;Sp  2) = 0  (A.1) 
sp 1 

for any two cells s p and s p -  2 belonging to K. Another terminology is some- 
times used: a cell space instead of a cell complex and a cell complex instead 
of an a-complex; the above have been introduced in ref. 26. 

An integral p-chain c p on the complex K is an odd function on p-cells 
with values in 7/, the group of integers: 

cP: s P E K ~ c P ( s P ) E 2 f  

The set of all p-chains over K form an Abelian group denoted by CP(K). 
The rank of this group is denoted NP(K); 2NP(K)  is the number of p-cells 
of K. 

A monomial chain m .s p is a chain that takes a value m on s p and 
vanishes on all p-cells different from s p. Hence, any integral chain may be 
written as a sum of monomial chains: 

c P = ~ m i . s i  p, I<~i<~NP(K), m i = c P ( s i  p) 
i 

Hereafter s p denotes either the cell s p or the monomial chain 1 -s p. 
One may introduce the scalar product 

(cL c~) = y~ c~(sf) c~(sT) 
( 
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and the boundary 8: CP(K)--+ C p I(K) and the coboundary 8*: CP(K)--+ 
C p+ I(K) operators defined by 

Notice that 

8sP = Z I(sP; sP -1 )  s p - I  
J 

8cP = E mi " 8s p = Z miI(sP; sp -1) s ;  - - 1  

i i ; j  

8*sP = 2 I( sp + 1; sp)s;+ i 
J 

8*cP = Z rag" 8s~ = Z miI (s~ + i; siP) sJ ~ +i 
i i ; j  

(A.2) 

I(sP;sp x)=(asP, s~ 1)--(s~,8*s~ 1) 

i.e., 8" is the adjoint of 8 with respect to the scalar product: 

(8c ~, cp-  1) = (c~, 8"c~-  1) 

A cell complex K 0 is said to be a cell subcomplex of the complex K if 
every element of Ko is an element of K, every two cells s p and s p+I have 
the same incidence number in K as they do in Ko, and every pair of 
opposites in Ko is a pair of opposites in K. A cell complex K0 is said to be 
closed (respectively open) if it contains with every cell also the cells on its 
boundary (respectively coboundary). We denote by Ko the closure of Ko, 
i.e., the minimal closed cell-complex containing K o. A complex is said to be 
connected if it cannot be expressed as the union of two nonempty, disjoint, 
closed subcomplexes. 

A hypercubic lattice 77 d may be considered as a cell complex denoted k 
Its 0-cells are vertices, its 1-cells are links, its 2-cells are plaquettes, etc. We 
shall denote by k p, p = 0, 1,..., d, the set of p-cells in k. The orientation is 
the usual one and the incidence number I(sP; s p - I )  takes values +_ 1 i f s  p -  l 
belongs to the boundary of s p with respect to the relative orientation and 
the value 0 otherwise. 

Let us consider a cell subcomplex K of 0_ and restrict the incidence 
function to K (note that the boundary operation, then, does not coincide 
with the same operation in k). K will be an a-complex if it satisfies (A.1). 
In particular, closed and open subcomplexes are a-complexes. Hereafter we 
shall only consider a-complexes. 

The group CP(K) has two distinguished subgroups with respect to the 
operator 8: the group of p-cycles Z p ( K ) =  {cP]ScP=O}  and the group of 
p-boundaries Bp(K)-- {cP]c p= 8c p +1}. Since 88 = 0 as follows from (A.1), 
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every boundary is a cycle: Bp(K)c Zp(K). The converse is not true in 
general. The factor group Hp(K)- Zp(K)/Bp(K) is called the p-homology 
group of the complex K. The rank of Hp(K), denoted by 7~P(K), is a 
topological invariant called the p th  Betti number. For 8" one defines 
similarly the groups of p-cocycles ZP(K) and p-coboundaries BP(K) and 
the p-cohomology group HP(K) of a complex K. The Betti number gP(K) 
characterizes the number of independent p-dimensional holes in K. The 
other topological invariants are torsion numbers "t'P(K); they are associated 
to p-chains c ~ which are not boundaries of ( p +  1)-chains in K, whereas 
OPc p is a boundary; the integers Of(K), i= 1, 2 ..... "~P(K), are also topologi- 
cal invariants called p-torsion coefficients, z p in the number of p-torsion 
coefficients (a characteristic example is the Klein bottle: zl = 1 and 01 = 2). 

The following notations will later serve to describe configurations of 
lattice models. A homomorphism ffP from CP(K) into an Abelian group G 
is called a G-valued p-chain. The set of G-valued p-chains of a complex K 
forms an Abelian group denoted CP(K, G); in particular, CP(K, Z ) =  
CP(K). Any o -p is determined by its values on the chains 1 .s p, i.e., on the 
cells sP; it thus defines an odd function on the complex K with values in G. 

One may define the differential 

d: CP(K,G)-+CP+~(K,G) 

and the codifferential 

d*: CP(K, G)-+ C p I(K, G) 

operators 

daP(cP+l)=aP(ScP+l), d*(aP(cP-~)=aP(8*cP-1) (A.3) 

In particular, 

daP(sp+l)=~ I(sP+l. p" , s s ) ~ ( s 2 )  
J 

d*~(s~-1) = Z I(s;; s ~-1) ~ ( s ; )  
J 

Whenever G is a ring with unity, every G-valued p-chain s belonging to 
CP(K, G) has a unique decomposition on the cell basis: a = Zi  ~isf, here cr 
belongs to G and Z denotes the group law of G. 

We introduce 

1. The group of G-valued p-cycles of K, 

Zp(K, G ) =  {r G)l d*aP=O} 

(here 0 denotes the unit element of G). 
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2. The group of G-valued p-boundaries of K, 

Be(K, G)=  {aP e CP(K, a ) l a P = d * a  p+ I, r e+ l e CP+ '(K, G)} 

3. The group of G-valued p-cocycles of K, 

ZP(K, G ) =  {GPECP(K, G)Jd(TP=O} 

4. The group of G-valued p-coboundaries of K, 

Be(K,G)={ae~Ce(K,G)loe=d~e-l,~e leCe I(K,G)} 

The factor groups He(K, G) = Zp(K, G)/Bp(K, G) and He(K, G) = Z P(K, G)/ 
Be(K, G) are respectively the G-valued p-homology and the G-valued 
p-cohomology groups of K. 

A.2. Dual Lattice and Dual Complex 

Let K be a d-dimensional cell complex; K* is said to be the dual 
complex of K if there is a one-to-one correspondence 

s e ~ * (s e) = Sd, -e (A.4) 

d-p of K* such that the between p-cells s e of K and the (d-p)-cel ls  s ,  
incidence numbers satisfy the relation 

Z(sp; sp-1) ~-  i(sd,-p+ 1.,~,~d p) 

The lattice 

(zd) * = {x, ix ,  = (x 1 + �89 xi+ 1 , ,  x d+ �89 xie z} 

is the dual lattice of Z d Let 1_* be the complex associated with (yd),.  The 
complex 1_* is the dual complex of L For any cell subcomplex K of 1_ there 
is a dual complex K* which is a subcomplex of 1_*; if K is closed, K* is 
open; if K is open, K* is closed. 

We introduce the operation �9 (Hodge operation) mapping CP(K) into 
C d P(K*) and CP(K, G) into Cd-p(K *, G) by 

�9 : C p ~ * (C  p ) d i p  d p d p - -  = e ,  , c ,  (s,  ) - c ~ ( s  e) 
(A.5) 

, : 0. p ___+ , ( o . p )  d p d p /  d p ,  - -  = a ,  , a ,  ts ,  ~ - a e ( s  e) 

It follows from (A.3) and (A.5) that 

*(daP)=d * *(aP), * (d*aP)=d *(a e) (A.6) 
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and for integral chains 

�9 ( ~ c p )  = e *  �9 ( c p ) ,  �9 ( ~ * c ~ )  = 0 �9 ( c ~ )  

Therefore the mapping �9 determines an isomorphism between: 

1. The group of G-valued p-cycles of K, Zp(K, G), and the group of 
G-valued ( d -  p)-cocycles of K*, zd-p(K *, G). 

2. The group of G-valued p-boundaries of K, Bp(K, G), and the 
group of G-valued (d-p)-coboundaries of K*, Bd-p(K *, G). 

3. The G-valued p-homology group of K, Hp(K, G), and the 
G-valued ( d -  p)-cohomology group of K*, H d P(K*, G). 

A.3.  #-Basis and ~*-Basis 

A standard result of algebraic topology is that the group CP(K) 
admits canonical 0-basis and #*-basis. A 0-basis consists in five families of 
integral p-chains: 

{ a f l i = l . . . v p - 1 } ,  { x P l i = l . . . r p  l}, { h P l i = l . . . v  p } 

{bPIi= 1 . . .vP}, {tP]i= 1 ...zp} 

satisfying 

Np = vp l +~cp I ~- 7~P ~- yP ~- TP 

Oai p=b i  p 1, i = l . . . v  p 1 

OxiP=OiP-ltiP 1, i = l . . . z p  1 

0hP = 0, i=  1 "''TO p 

bP = Oa/p+I, i=  1 . . . v  p 

OP t(=axiP+ l, i= 1 ... v p 

0P=0 (mod 0P+~) 

A 0*-basis consists of five families of integral p-chains: 

{•Pli= l . . .vP}, {s  . . .vP}, { ~ f l i =  l.. .zE p} 

{6PIi=a- .-vP-1},  { t - f ] i= l - . - r  p-I} 
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satisfying 

NP = v p l q- Tp I ~- TgP Av vP-~- TP 

0 * 6 P = 5  p+I, i =  1 . . . v  p 

c3,ffp=0 p 1{p+1, i = l . . . r P  

~?*/~P = 0 i = 1 --- rc p 

5p = c~,~p- 1 i = l . . . v  p 1 

Op{p ~. ~*ffp-- 1 i = 1 . . .  r p -  1 

We refer to refs. 26 and 36 for suitable examples for our purposes. 
The mapping (A.4) sends a 0-basis into a ~*-basis and conversely, and 

N P ( K ) = N  d P(K*), n P ( K ) = ~ d - p ( K  *) for O<~p<<.d 

~ P - l ( K ) = ' r d  P(K*) for l<~p<~d 

Every p-cycle z belonging to the group Zp(K, G) has a unique decom- 
position on a 0-basis, 

TP - I ToP vP ~P 

z= E r + E  ih7 + E  ibf + Z  it7 
i - 1  i = l  i - - 1  i = 1  

Here /~, /~, ?~ belong to G and ~ belongs to the group G ( 0 f - l ) =  
{g  lef-lg=0}. 

Every p-boundary b eBp(K ,  G) has a unique decomposition on a 
#-basis, 

vP I:P 

b =  E flibi p + E Piti p 
i = i  i 1 

Here /~ belong to G and pi belongs to the group OPG= {OPg/g~G}.  
Every p-cocycle z ' ~ Z P ( K ,  G) has a unique decomposition on a O*- 

basis: 
zP  7cP vp  1 ~p 1 

i = 1  i - - i  i - 1  i - - 1  

Here # ; , / / ; ,  7; belong to G and ~; belongs to the group G(Of). 
Every p-coboundary b ' e  BP(K, G) has a unique decomposition on a 

#*-basis: 
v P - I  v p - I  

i - - 1  i = l  

Here fl; belongs to G and 7; belongs to the group 0 p ~G. 



q-State Potts Model 243 

For the above groups the following decomposition in direct sums 
holds true (see ref. 26 for details): 

"cP - 1 ~P vP "~P 

Z p ( K ,  G ) ' ~  S G(OiP  1) (~ )  S O ( ~  S G ( ~ )  2 G 
t = l  i = 1  i = 1  i = 1  

vP rP 

Bp(K, G)~- Z GO 2 07G 
i = 1  i = 1  

~p 1 7cP z'P 

Hp(K, O)~- Z 6(07 1))(~ 2 G@ Z G/OTG 
l = l  i = 1  i = 1  

(A.7) "cP - 1 vp - -  I TJP "~p 

ZP(K,G)~- Z G@ Z G@ Z G@ Z G(Op) 
I = 1  i = 1  i = 1  i = 1  
.~p 1 a,P- 1 

BP(K,G)~- 20p-'G@ ~ a 
z = i  i = 1  

"cP - 1 7~P "~P 

HP(K, a)_~ Z a/o~-'a@ Z G| ~ a(o~) 
l = l  i = 1  i = 1  

N P = v p I At- -c p 1AF ~ P Af- y P .Jt- ,'c P 

where the symbols _- and | denote, respectively, isomorphism and direct 
sum of groups. 

Finally we recall the Alexander duality theorem; we refer the reader to 
ref. 26 (Vol. 3, pp. 41 42). 

T h e o r e m  A.1. Let K denote a closed subcomplex of the lattice cell- 
complex L; then: 

(a) For p such that 1 ~<p~<d-2,  

HP(K, G)~-Hd p I([[]_\K]*, G) 

~(K) = ~d-  p( [ k \K]  * ) 

u~ - 1 = u d- I(K) 

(b) For p such that 0 ~< p ~ d - 2 ,  

~~ = H -  p -  2 ( [ k \ K ] * )  

(c) K a n d  [L\K]*  are p-torsion free, vP=0,  for p = 0  and p>~d-2. 
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A P P E N D I X  B 

B. I .  Ver i f icat ion  of the General ized Peierls Condit ions 

To verify (2.5.4) and (2.5.5) from Proposition 2.5.1, we put 

d(7, p)= q-(p/d)NP(V(7)) ]Zp(V(~))[ 

d(7 , ,p )=  q E(a p)/d]Nd-p(v)~/.))[zd P ( V ( ~ , ) ) [  

and evaluate it in the following cases 

(a) If p = 1 and d>~ 2, we get from the relations (A.7) 

IZl(V(7))) = )z~_ ,(E v(7)]*)l 
= qNd(Ev(7)] *) = q N ~  Int 7) 

I Zd 1(V(7,))1 = IZI( [V(? , ) ]*) I  

=qNl(EVO.)] *) N~176 *) 

We have used the fact that closed complexes are 0, d - 2 ,  d - 1 ,  and d 
torsion-free and that ~za- l ( [V(7)]*)=0.  Thus, 

d(y, 1) = q N~ Nl(Inty)/d Nl(y)/d 
(B.1) 

d(? , ,  l ) = q NI(EV(7*)]*/d- N~ ~~ 

(b) If p = 2 and d =  3 we get, proceeding as above, 

IZ=(V(7))l = IZ~([ v (7 ) ] * ) l  
=qNl(EV(~)] *) N~176 

IZ2( V(?,))l = [Zl(I- V(7,)]*)I = qU0(,,t 7.) 

Thus 

d(7, 2)=q N'(Ev(7)]*)/3 NO([v(7)]*)+rcO([V(Y)]*) 
(B.2) 

d(? , ,  2) = q N~ 7 . )  - NI( Int y . ) / 3  - Nl(y.)/3 

To evaluate the expressions in (B.1) and (B.2), we consider a complex 
D ~-1=1_ r ', l~<r~<d, and introduce its envelope E(D r ' ) = E  and its 
fringe F ( D r - ' ) = F .  We denote by U)(E, x) the number of positively 
oriented 1-cells, I e E, contained in the coboundary •*x of a site, x e E. The 
number NI(F) of links in the fringe F of D r ' may be written as a sum 

N'(F) = Nil(F) + N~(F) 
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with NI(F) the number of links in F such that each link is contained in the 
coboundary of exactly one site x belonging to E, and NI(F) is the number 
of links in F such that each link is contained in the coboundary of two sites 
x belonging to E. 

Lemma B. 

(a) N~ N~(E) NI(F) + N~(F) 
d 2d 2d 

(b) ~~ ~< ~ 2 ,~tl(E,x) 
l(l)(E,x) <~ d 

Proof. Observing that 

I(I)(E, x) 
N I ( E )  = 2 2 

9c~E 

we get 

NO(E ) NI(E) 1 
d 2dx~ E [2d--I(t)(E, x)] (B.3) 

Taking into account that the maximal number of links le  E occurring in 
the coboundary of x E E is 2d, we deduce that 2 d -  I(I)(E, x) is the number 
of links in F contained in the coboundary of x; it follows that 

1,_~ N~(F) Nl(F) 

Note that if r = 1, then N~(F(D~ = 0 by construction of E(D~ 
The bound in (b) on the number of connected components follows if 

we notice that every p-cell sPGE contains 2 p sites of E and that, in a 
d-dimensional cell complex E, d kinds of connected components can occur, 
namely, components which are trees, components containing loops, com- 
ponents containing closed surfaces of dimension ( d -  1). I 

Now we apply Lemma B to expressions (B.1) and (B.2), respectively. 
We get 

d(7, 1) = q NI(y)/2N (B.4) 

because Int 7 is of the form E(D~ and F(Int 7) = 7, by construction of 7. 
The bound 

d(7., 1) = q N](7*)/2d2 (B.5) 



246 Koteck~ e t  al. 

follows by applying the relation (B.3) and the statement (b) of 
Lemma B to the case where E =  IV(7,)]*  and taking into account that 
I(Z)([ V(7,)]*, x)/> 2 by construction of a contour 7,.  

To get a bound on (B.2), one proceeds as in (B.1) with d = 3 ,  to 
obtain 

d (7 ,2 )=q  NI(y)/18 and d ( 7 , , 1 ) = q  NI(y*)/6 (B.6) 

B.2, Proof  of  the Relat ion on the Free Energy 

We shall now prove that the free energy fp(flH) satisfies (2.4.4). We 
first recall that the diluted partition functions of the original and dual 
models are related by 

Zdi'(V, fl, p) = [BP( V)I q - - ( p / d ) U P ( V )  zdi l (  V , .  fl*, d -  p) 

[-this follows from (2.27), (2.4.3), and (2.2.5) for the complexes with trivial 
homology considered in the above relation]. Applying the relations (A.7), 
we obtain 

p-i 1)~+p IN~(V ) IBP(V)] = qZ==0( 

We put 

p 1 pNP(V) AP(V) = ~ ( - l f f  N~(V)+(-1)P-~ 
or 

and show that AP(V) is a boundary term. To this end, we consider the 
expression 

NP(V) - C~N~ + C~N~ 

Using an equivalent of the relation (B.3), we prove that NP(V) - 
C JaN~ = Bj(V) is a negative boundary term for all j. Namely, Bj(V) ~< 0 
Vj and 

Bj(V) 
~ 0  if VT 1_ 

Nj(V) 

Hence 

AP(V) = ~ ( - -1)JBj(V)+ (--1)JCJ+(--1)  p+ICj 1 N~ 
j = o  j 0 
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From the identity 

= 1 for each j such that 0 <~ j ~< d 

w e  g e t  

p 

(-1)JC~+(-1)P+IC~_I=O for each p 
/ - 0 

T h u s ,  A P(V)  is a boundary term, and the desired equality follows since 
UP(V) = Ua-P(V*). 
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